
A method for shape-detection has to 
provide a quantitative parameter as a 
unique means for characterizing the 
shape of an object, independent of its 
orientation, position and dimensions. Let 
us look at the simple, two-dimensional 
case: the objects are on a flat surface 
and are flat themselves. Optical imaging 
is supposed to have no influence on the 
shape, that is perspective, optical distor-
tions, inhomogeneous lighting, the spa-
tial variation of the efficiency of the lens 
and compression or expansion due to 
image acquisition are negligible or have 
been corrected. To keep our approach 
simple, let us for the time being deal 
with objects without holes and with good 
contrast to the background only. An im-
age which might result under these con-
ditions is shown in figure 1. A human 
observer will immediately be able to de-
scribe the objects by naming their 
shapes: rectangle, square, circle, trian-
gle, moon, heart, ellipse. A quantitative 
measure for these shapes is the com-
pactness. The basic idea behind this fea-
ture is the fact that the circle is the geo-
metrical figure with the smallest 
circumference for a given area. A square 
is less compact than a circle with the 
same area, since its circumference is 
larger. For a circle with radius r the ra-
tio between circumference U and area A 
is 2πr/πr2, that is 2/r; for the square with 
edge length a the ratio is 4a/a2, that is 
4/a. This parameter is invariant under 
rotation, but depends upon the linear di-
mensions. A better choice is the ratio 
U2/A, where the linear dimensions r and 
a, respectively, are eliminated. For the 

Fig. 1: Some simple 
shapes in a binary 
image and results 
of the blob-analysis 
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Child’s Play
Image Processing Basics: Shape Detection

Human visual perception is excellent in detecting shapes of objects. Even small 

children will easily differentiate between circles, squares or triangles when wooden 

toys or sweets are at stake. Similarly, machine vision applications on the factory 

floor or in the open environment sometimes call for quantitative parameters to 

characterize a shape. Traffic signs, e.g., may well be pre-classified by their shape, and 

for some pills the integrity of their shape is an important issue in quality control. 

This article describes some simple, well-known methods of shape detection.
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circle, this feature has the value 4π, for 
the square the value 16, independent of 
the dimension of the object, the orienta-
tion or the position in the image.

Compactness

Most image processing libraries provide 
the compactness or a similar feature in 
their blob-analysis. Often, this shape-pa-
rameter is normalized to get the value 1 
for the circle. Within the tool which was 
used for the blob-analysis in figure 1 the 
“compactness” is calculated as U2/4πA.  
Other shapes will thus have a “compact-
ness” larger than 1. Some other tools 
prefer the reciprocal value. Closer in-
spection of the result-listing in figure 1 
shows that rectangle, square, triangle, 
circle and heart can well be differenti-
ated by their compactness. The value for 
the circle, however, is significantly differ-
ent from the theoretical value 1. There 
are two reasons for this strange effect. 
First, there exist different methods to 
calculate the circumference of an object. 
Some methods just take the number of 
pixels on the contour, some use the factor 
√2 to account for diagonal steps, others 
calculate the circumference from the 
chain-code as the total length of the lines 
connecting the centers of the contour 
pixels. Similar differences exist for the 
calculation of the area. An extreme ex-
ample shows the problem: for an object 
which consists of a single pixel only, one 
method may yield the value 1 for the 
area and 4 for the circumference, an-
other method may result in 0 for the area 
and 0 for the circumference. Second, 
every object in the digital plane is made 
up of pixels, it is discrete. Circles are al-
ways approximated as polygons. There-
fore, features describing the area and the 
circumference of an object may show de-
viations from the ideal values. Both ef-
fects will have an influence when the 
compactness is calculated. The discrete 
nature of the digital plane will usually be 
more important for smaller than for 
larger blobs or relevant structures. An-

other interesting observation in the re-
sult-listing of figure 1 is the striking simi-
larity between the compactness of the 
moon-like object and the ellipse. For an 
application in industrial image process-
ing or a machine-vision task the stability 
of the features is always an issue and has 
to be carefully checked to meet the re-
quirements of the task. Since the circum-
ference is sensitive for noise in the grey-
level signal, we may well make the 
educated guess that the compactness will 
not provide a safe basis to distinguish be-
tween these two shapes in an application 
on the factory floor.

Stability

The sequence of images in figure 2 and 
the values for the features in the corre-
sponding table 1 gives a first impression 
of the stability of the parameters. The 
shapes in figure 1 have been rotated by 
an angle of 20°, 45°, 70° and 90° with re-
spect to their original orientation. A fur-
ther image shows the same objects scaled 
down to 30 % of their original size. In fig-
ure 3 two of the shapes, heart and el-
lipse, are shown in arbitrary orientations 
and dimensions. The corresponding fea-
tures are listed in table 2. As a measure 
for compactness the term U2/A has been 
calculated. The values for U and A have 
been taken from the blob-analysis pro-
vided by the tool used in figure 1. For 
some shapes the orientation seems to 
have a large effect on the value for the 
compactness. The compactness of the 
square, e.g., varies between 16.0 and 
18.6, which amounts to a relative range 
of 15 %. The same range appears for the 
rectangle. The results also confirm that 
the shapes “moon” and “ellipse” can not 
be properly distinguished by compact-
ness. Values for the ellipses range be-
tween 26.60 and 27.72, for the moon-like 
object between 26.46 and 26.57. In addi-
tion, for the image where the objects 
have been scaled down to 30 %, ellipse 
and moon have compactness-values of 
26.29 and 26.15, respectively. Thus, when 

Fig. 2: The binary image from figure 1 with 
different orientations and scaled-down to 30%

Table 1: Compactness and normalized moment 
of inertia for the objects in figure 2

0 Grad U2/A Iz/A2 100Iz/A2

Rechteck 33,05 0,5217 52,17

Quadrat 16,00 0,1667 16,67

Dreieck 22,45 0,1956 19,56

Kreis 14,07 0,1592 15,92

Mond 26,57 0,2168 21,68

Herz 17,97 0,1747 17,47

Ellipse 26,60 0,3523 35,23

20 Grad

Rechteck 38,40 0,5199 51,99

Quadrat 18,54 0,1665 16,65

Dreieck 23,69 0,1955 19,55

Kreis 14,18 0,1592 15,92

Mond 26,46 0,2168 21,68

Herz 18,16 0,1747 17,47

Ellipse 27,58 0,3536 35,36

45 Grad

Rechteck 33,13 0,5229 52,29

Quadrat 15,96 0,1666 16,66

Dreieck 22,32 0,1956 19,56

Kreis 14,07 0,1592 15,92

Mond 26,46 0,2165 21,65

Herz 17,91 0,1746 17,46

Ellipse 26,75 0,3550 35,50

70 Grad

Rechteck 38,46 0,5195 51,95

Quadrat 18,64 0,1667 16,67

Dreieck 23,90 0,1956 19,56

Kreis 14,06 0,1592 15,92

Mond 26,57 0,2163 21,63

Herz 18,18 0,1747 17,47

Ellipse 27,72 0,3538 35,38

90 Grad

Rechteck 33,05 0,5217 52,17

Quadrat 16,00 0,1667 16,67

Dreieck 22,27 0,1955 19,55

Kreis 14,07 0,1592 15,92

Mond 26,55 0,2163 21,63

Herz 18,02 0,1748 17,48

Ellipse 26,71 0,3529 35,29

0 Grad 30 %

Rechteck 32,18 0,5035 50,35

Quadrat 16,00 0,1666 16,66

Dreieck 21,93 0,1954 19,54

Kreis 14,41 0,1591 15,91

Mond 26,15 0,2178 21,78

Herz 18,32 0,1741 17,41

Ellipse 26,29 0,3433 34,33

0 Grad 20 Grad 45 Grad 70 Grad 90 Grad 0 Grad 30 %

B A S I C S

12 Inspect 3/2009 www.inspect-online.com



Author 2
Prof. Dr. Christoph Heckenkamp

Contact 2
Darmstadt University of Applied Sciences
Darmstadt, Germany
Department of Technical Optics and Machine 
Vision
heckenkamp@h-da.de
www.fbmn.h-da.de

orientation and dimension are changed 
independent of each other, the intervals 
for the compactness of ellipse and moon 
will overlap. Figure 3 and the corre-
sponding table 2 show that the situation 
for hearts and ellipses is much better. 
The relative range for the compactness is  
about 2.5 % only and will add up to about 
5 %, when the values from figure 2 are 
also taken into account, but without any 
reasonable risk of overlap.

Moment of Inertia

Ellipse and moon may well be distin-
guished from each other by means of an-
other, well-known feature for shape de-
tection: the moment of inertia. Moments 
are statistical parameters. In general, the 
moment mpq of a cloud of pixels with co-
ordinates (x, y) is calculated as Σxpyq; p 
and q are integers. The moment m00, e.g., 
is equal to the number of pixels in the 
foreground and usually is taken as a 
measure for the area. The moments m02 
and m20 have the structure Σy2 und Σx2; 
they are similar to the moment of inertia 
with respect to the x-axis and the y-axis, 
respectively. For shape-detection, these 
moments are first calculated with re-
spect to the centre of mass (xs, ys) of an 
object („centered“), thus having the form 
Σ(x-xs)2 and Σ(y-ys)2, respectively. These 
are the moments of inertia Iy and Ix, re-
spectively, with respect to an axis paral-
lel to the y- and x-axis, respectively, 
through the centre of mass of the object. 
A circle has the same moment of inertia 
for both directions. An elongated ellipse 
with the semi-major axis parallel to the 
x-axis like in figure 1 has a small mo-
ment of inertia with respect to the x-axis 
and a large moment of inertia with re-
spect to the y-axis. The sum of both mo-
ments is invariant under rotation and 
corresponds to the moment of inertia Iz 
of the object with respect to an axis per-
pendicular to the image plane. Normaliz-
ing the moments, in this case to the 

square of the area, yields a feature inde-
pendent of the dimensions of the object. 
Such parameters are called normalized, 
centered moments. The feature Iz/A2 is 
listed in table 1 and 2. The data show 
that the moon-like shape and the ellipse 
can be distinguished by this parameter, 
even when variations of orientation and 
dimensions occur. For the other shapes 
this feature also is quite stable in com-
parison with the compactness. The abso-
lute numerical differences between the 
values seem to be small for some shapes, 
but the stability of this feature against 
rotation and scaling is good enough to 
take it into account for shape-detection 
even in these cases. The combination of 
several different centered, normalized 
moments leads to the construction of fur-
ther features suited for shape-detection 
[1]. By weighting with the grey-level of 
an object-pixel the concept of moments 
may even be applied to grey-level im-
ages. And another advantage of moments 
compared to the features generated by 
blob-analysis may be of importance: mo-
ments may be calculated for arbitrary 
groups of pixels, whether they are con-
nected or not, whereas blob-analysis al-
ways needs binary objects made up of 
closely connected pixels.

Conclusion

Shape-features have to be invariant un-
der rotation, translation and scaling. 
Shape detection is not a simple task, even 
with two-dimensional objects and opti-
mum conditions for image acquisition. 
The discrete nature of the image plane 
may lead to significant deviations from 
the ideal values for simple shape indica-
tors such as the compactness. These fea-

tures, however, may be well suited when 
only a few, well-defined shapes can ap-
pear in the application and when the sta-
bility of the shape-parameters has been 
carefully evaluated. For shape features 
directly taken from image processing li-
braries it might be a good idea to look at 
the details of the methods used. Combi-
nations of normalized, centered moments 
may show very good performance as 
shape-parameters. In addition, these fea-
tures may be calculated for arbitrary 
clouds of pixels and are not restricted to 
binary objects as in blob-analysis.
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Fig. 3: Hearts and ellipses with arbitrary orienta-
tions and dimensions

Table 2: Compactness and normalized moment of inertia for the objects in figure 3

Herzen div Fläche A Umfang U U2/A Iz/A2 100Iz/A2

1 24970 668,7 17,91 0,1748 17,48

2 7403 362,9 17,79 0,1745 17,45

3 15690 532,3 18,06 0,1747 17,47

4 801 118,7 17,59 0,1740 17,40

5 8549 392,9 18,06 0,1747 17,47

6 4405 281,8 18,03 0,1745 17,45

Ellipsen div

1 15300 636,9 26,51 0,3512 35,12

2 1417 196,0 27,11 0,3456 34,56

3 7586 449,4 26,62 0,3510 35,10

4 4044 328,4 26,67 0,3540 35,40

5 8667 481,6 26,76 0,3541 35,41

6 8673 482,1 26,80 0,3536 35,36

Ellipsen divHerzen div
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