
Get It Straight
Image Processing Basics: Hough-transform

The Hough-transform is best known as a 

method “to find straight lines” in an im-

age. Unfortunately, people who encounter 

the concept for the first time usually are 

somewhat irritated by the mathematical 

formalities necessary to get it straight. The 

basic idea of the Hough-transform, how-

ever, is simple. The simplicity, the elegance 

and the potential of the method immedi-

ately becomes clear when looking at the 

Hough-transform for circles rather than for 

straight lines. Once you have caught the 

wave, you will easily follow the arguments 

leading to the detection of other analytic 

curves, including, of course, straight lines – 

and you will immediately understand the 

main advantages of Hough-transform, 

namely, to detect partly occluded shapes 

and incomplete curves.

The Basic Idea

Imagine a simple binary image like in the 
left part of figure 1, containing a single, 
complete circle of black pixels on a white 
background. Let us first try to find the 
center of this circle, and let us assume 
that the radius of the circle is already 
known. A circle is the set of points which 
have the same distance to a common 
point, the distance being the radius and 
the common point being the center of the 
circle. To find the center of the circle, you 
may proceed as follows: for every pixel of 
the image, beginning at the upper left 
corner and scanning the image along its 
lines and columns like with a filter-oper-
ation, draw a test-circle with the desired 
radius around the pixel. Then check the 

amount of overlap between the test-cir-
cle and the “real” circle in the image: 
walk along the curve of the test-circle, 
check for black pixels on this circle, sim-
ply count the number of these black pix-
els and store this number in a new image 
at the current center of the test-circle. 
For many positions of the test-circle 
there will be no overlap at all, and the 
resulting number will be zero; some po-
sitions will yield an overlap in one or two 
pixels, resulting in the numbers one and 
two; but once you hit the center of the 
real circle in the image, the result will be 
the greatest possible number which can 
be achieved by this procedure. The num-
bers stored at the pixels of the resulting 
image may be interpreted as grey-levels, 
and the center of the circle can easily be 
identified as a bright spot on a dark back-
ground.

This approach yields good results, 
but it is not very effective. In many ap-
plications, large areas of the background 
will be examined, although the black 
pixels of the real circle are far away. Ob-
viously, it would be much better to some-
how use the foreground-pixels for guid-
ance instead of scanning the whole 
image. But how? Now it is time for a 
great leap: let us put the method upside-

Fig. 1: A circle and some circles with the same 
radius drawn around points on the boundary

B a s i c s

24 Inspect 3/2008 www.inspect-online.com



down (or rather inside-out). 
Instead of drawing a circle 
around every pixel, fore-
ground or not, and checking 
for black pixels on the curve, 
let us draw circles with the 
desired radius around the 
black foreground-pixels only 
and take a look at the result-
ing image, containing the 
real circle and all the circles 
drawn around the pixels on 
its curve. Some of these lat-
ter circles are shown in the 
right part of figure 1, high-
lighted by the red colour. All 
these circles have one com-
mon point: the center of the 
real circle, where they all co-
incide, and the number of co-
incidences is equal to the 
number of pixels on the curve 
of the real circle. Thus, the 
number of coincidences is 
the same number you will get 
when drawing a circle with 
the desired radius around 
the center of the real circle 
and counting the number of 
black pixels on the curve of 
this test-circle, like in the 
procedure explained before – 
but much more effective! 
Think about it for a few sec-
onds, and you will see that 
the two methods are equiva-
lent, they will yield the same 
result. Counting the coinci-
dences is very simple: allo-
cate a new image and initial-
ize all grey-levels to zero; go 
to the position of a black 
pixel in the original image, 
draw a circle with the de-
sired radius around this po-
sition in the new image, and 
add 1 to the grey-level of 
every pixel you touch by 
drawing this circle in the 
(new) resulting image; do so 
for every black pixel in the 
original image. By this pro-
cedure, you will accumulate 
the coincidences in every 
pixel, the number of coinci-
dences being represented by 
the grey-level in the new im-
age, the so-called accumula-
tor-array. Finally look for the 
brightest spot in the accumu-
lator-array: this is the center 
of the circle. If the radius 
chosen is wrong, there will 
be some coincidences as well, 
but not as many as with the 
proper radius. Thus, in the 

accumulator-array, the cent-
ers of the real circles in the 
image will pop-up as spikes 
on a noise-floor. This is the 
basic principle of the Hough-
transform.

Now let us skip the as-
sumption that the radius of 
the circle is already known. 
In this situation it takes a bit 
longer to find the position of 
the circle (and its radius), but 
just guess and try! Choose a 
reasonable interval for the 
radii of the test-circle and 

proceed as before: for every 
radius chosen, scan the im-
age for overlap between the 
test-circle and the real circle. 
The result will be not a single 
image, but one image for 
every radius of the test-circle, 
a whole stack of images. But, 
as with the situation where 
the radius is already known, 
there is exactly one image out 
of the stack with the brightest 
spot (that is, the highest 
number of overlap) of all 
spots of all images in the 

whole stack, the center of the 
real circle corresponding to 
the position of the brightest 
spot and the radius of the real 
circle corresponding to the 
radius of the test-circle used 
for this particular resulting 
image. Even if you just add up 
the whole stack of resulting 
images to a single image, sim-
ply adding the grey-levels of 
corresponding pixels in the 
stack of resulting images to a 
single accumulator-image, 
there will usually remain a 

NeuroCheck GmbH

Software Design & Training Center : 70174 Stuttgart / Germany : Phone +49 711 229 646-30

Engineering Center : 71686 Remseck / Germany : Phone +49 7146 8956-0

e-mail: info@neurocheck.com

The Experience of more than 6,000
Applications World-wide.

NeuroCheck is the efficient solution for all application areas of image

processing in manufacturing and quality control. More than 1,000 library

functions, configured by mouse click in every conceivable combination,

help you to rapidly create cost effective and reliable solutions for the

entire field of industrial visual inspections. Your benefit: shorter realization

time, company-wide standardization, and greater reliability compared to

conventional programming. NeuroCheck represents a consistently integrated

concept from the software through to the complete application including all

vision components. PLUG & WORK!

For more information: www.neurocheck.com

 B a s i c s



bright spot at the center of the real cir-
cle.

A Simple Example

Figure 2 shows the procedure with a syn-
thetic circular structure in a binary im-
age. The pixel-structure due to the dis-
crete image-plain is clearly visible. The 
corresponding accumulator-image is 
quite similar to the sketch on the right 
side of figure 1, showing a prominent 
spot at the position of the center of the 
circle. Further structure can be found in 
the accumulator-image, namely a second 
circle with a greater radius and some 
ripple in the background. Figure 2 also 
shows a contrast-enhanced version of 
the accumulator-image to amplify these 
structures. It is easily seen from figure 1 
how these features arise. To get a better 
idea of the numbers, the innermost 5 x 5 
pixels of the accumulator are shown in 
an enlarged view, with their grey-levels 
as inserts. Finally, a 3D-plot of the grey-
levels over the coordinates of the accu-
mulator gives an intuitive view of the sig-
nal-to-noise-ratio.

A similar situation may appear in real-
world-images like in figure 3. To take ad-
vantage of the Hough-transform, it is a 
good idea to isolate the boundary of ob-
jects, yielding best results with bounda-
ries thinned to a width of a single pixel. 

This has been done in the second image 
in figure 3. The Hough-transform is then 
applied to this pre-processed image, re-
sulting in a bright spot in the accumula-
tor at the center of the wheel.

Advantages

It is immediately clear that this method 
may consume a lot of computing power, 
but it has some very important advan-
tages. It works not only for a single com-
plete circle, but also for circles where 
parts of the curve are missing, either as 
a whole sector or in the form of several 
small gaps in the curve like in a punctu-
ated circle. The overlap-number, how-
ever, will become lower than with full 
circles, and the discrimination between 
the brightest spot in the accumulator-im-
age and the background will become less 
robust and eventually break down once 
the number of pixels defining the circle 
becomes too small. Another advantage: it 
is not necessary that the circles under 
examination are separated from each 
other like in blob-analysis; two or more 
circles may be overlapping and will nev-
ertheless usually be detected. 

Figure 4 shows an example for over-
lapping circles, which already appear as 
well-prepared boundaries in the original 
image. Again, a second, post-processed 
version of the Hough-image is shown to 

enhance the additional structure in the 
accumulator. The example in figure 5 
shows several coins, most of these ob-
jects being clearly separated from each 
other, but two coins are just touching 
each other and three others are overlap-
ping, which appear as connected and 
partly occluded circular objects in the 
image. Isolating the boundaries and per-
forming the Hough-transform yields the 
centers of all theses circles as clearly vis-
ible bright spots in the accumulator.

There are numerous other examples 
to show the potential of the method. 
There may arise some disturbing fea-
tures, however, in uncontrolled scenes, 
such as in a search for traffic-signs in a 
street, and computing the Hough-trans-
form for certain images may well take 
several seconds even on a state-of-the-
art personal computer.

Hough-Transform for Straight Lines

While the basic idea of the Hough-trans-
form for circles and the construction of 
the accumulator can be intuitively un-
derstood and even be implemented 
straight-forward, the Hough-transform 
for straight lines needs some mathe-
matical considerations. As with the 
search for circles, it is not necessary to 
have complete straight lines in the im-
age. The Hough-transform rather looks 

Fig. 2: Hough-
transform for a 
circle
a) binary circle in 
the discrete image 
plane; b) accumu-
lator-image result-
ing from Hough-
transform;  
c) accumulator-im-
age, contrast-en-
hanced; d) central 
area of the accu-
mulator with 
grey-levels as 
insets; e) 3D-plot 
of the grey-levels 
of the accumulator

Fig. 3: a) original image; b) boundaries have been isolated and thinned; c) contrast-enhanced version of the accumulator after Hough-transform applied to 
the boundaries 

B a s i c s

26 Inspect 3/2008 www.inspect-online.com



for the set of pixels in an image which 
are collinear, that is which are located 
on a common straight line which may 
be drawn through these pixels. As with 
the search for circles, we might draw 
all possible straight lines through all 
pixels in the image and count the black 
foreground-pixels on these lines, thereby 
getting a figure of merit for discrimina-
tion of the desired line. Obviously, this 
is quite a task. Again, a much better 
starting-point are the black pixels in the 
foreground. First imagine that some-
thing is already known about the 
straight line we are looking for, its 
slope, for instance. Then we might draw 
a straight line with this slope through 
every black pixel in the foreground, get-
ting a number of parallel lines. When 
two or more pixels are collinear, their 
corresponding straight lines will coin-
cide, the number of coincidences being 
identical to the number of pixels on this 
particular line. Unfortunately, with a 
straight-forward-approach it seems to 
be quite complicated to check for coin-
cidences between whole lines in an im-
age. But when we look at the well-
known representation of a straight line 
in the xy-plane in the slope-intercept-
form, y=mx+b, it becomes clear that out 
of all the parallel lines with the same 
slope m those straight lines are identi-
cal which have the same intercept b. To 
check for coincidences between two 
lines with identical slope m, we thus 
simply have to calculate their intercepts 
b1 and b2 and compare. For a given 
point (x,y) on a straight line with slope 
m, the intercept will be b=y-mx. We may 
thus proceed as follows: allocate an ac-
cumulator-vector with one element for 

every possible value of b and initialize 
to zero; go to the position of a black 
pixel in the original image, draw a 
straight line with the desired slope m 
through this pixel and calculate the in-
tercept b; add 1 to the value of the cor-
responding position in the accumulator; 
do so for every black pixel in the origi-
nal image. By this procedure, we will 
accumulate the coincidences between 
straight lines through every pixel, the 
number of coincidences being repre-
sented by the values in the accumulator. 
Finally look for the brightest spot in the 
accumulator: this is the intercept for 
the common straight line.

When neither intercept nor slope is 
known, we can generalize the approach. 
For every black pixel, there is a whole 
bundle of straight lines with different 
slopes and different intercepts which 
can be drawn through this pixel. Slope 
and intercept, however, are not arbi-
trary; there is the relation b=y-mx be-
tween b and m for all the straight lines 
which contain a single pixel (x,y). If we 
plot the possible values for b and m for 
a given, fixed pixel (x1,y1) in a diagram 
spanned by m and b, the mb-plane, we 
will get a straight line, characterized by 
the equation b=-x1m+y1, -x1 being the 
slope and y1 being the intercept of the 
line in mb-space. A single pixel (x1,y1) is 
thus transformed to a whole straight 
line in mb-space. A second single pixel 
(x2,y2) will be represented by a different 
straight line in mb-space. These two 
lines in mb-space will intersect at a sin-
gle point with common values for m and 
b, thus completely characterizing the 
straight line in xy-space connecting the 
two pixels (x1,y1) and (x2,y2). Obviously, 

Fig. 4: Hough-transform for overlapping rings
a) original image; b) and c) accumulator-images 
after Hough-transform, raw-image and contrast-
enhanced; d) accumulator after thresholding;  
e) overlay of a) and d) showing the centers of 
the rings as bright spots

 B a s i c s



In practice, the Hough-transform for 
straight lines is not implemented with 
the parameters slope and intercept, but 
with the orientation and the distance 
from the origin according to the normal 
or Hesse-representation. In this param-
eter space, a point transforms to a sinu-
soid rather than to a straight line. Col-
linearity, however, is again detected by 
the intersection of these curves in pa-
rameter space. The implementation of 
the Hough-transform for straight lines 
is not simple, and it is a good idea to 
consult some standard textbooks [1] [2] 
to tackle the various further aspects 
which are far beyond the intentions of 
this introductory article. Figure 6 shows 

mb-space is an accumulator-array 
which allows to simply add-up all coin-
cidences between straight lines which 
appear when drawing the bundles of 
possible straight lines through all the 
foreground-pixels in the image. For 
every black pixel (x,y) in the image, we 
simply have to draw the corresponding 
straight line in mb-space; whenever we 
hit a certain combination (m,b), we add 
1 to the corresponding pixel in the ac-
cumulator-image. Finally, the brightest 
spot in the accumulator-image repre-
sents the slope m and the intercept b of 
the desired straight line, and we may go 
back to the original image and draw 
this line.

Fig. 5: Hough-transform for partly occluded coins
a) original image; b) boundaries have been isolated and thinned; c) accumulator-image after Hough-
transform, contrast-enhanced; d) the original image, showing the result of thresholding of the accumu-
lator as black spots in the centers of the coins

a simple example for the detection of 
straight lines in a binary image, omit-
ting the various steps of analyzing the 
accumulator and just giving the result-
ing lines in the xy-plane.

Further generalization

The basic idea of the Hough-transform 
is the construction of an accumulator in 
a parameter-space. Straight lines are 
characterized by two parameters, re-
sulting in a two-dimensional parameter 
space. Other geometric forms such as 
elliptical curves may be described ana-
lytically by more than two parameters. 
The accumulator-space will thus be-
come more complex and the computing-
power necessary to reasonably imple-
ment such a method may be beyond 
current technology, but the concept re-
mains the same. Hough proposed his 
approach in 1962 [1], probably not even 
dreaming of the performance of current 
processors. About 20 years later, in 
1981, Ballard [3] published a method 
for Hough-transform of arbitrary non-
analytic shapes. Nowadays, we can get 
tremendous computational power at 
reasonable cost, and the Hough-trans-
form for straight lines and circles may 
well be performed at video-frame-rates 
in certain applications. The literature is 
full of such clever, sophisticated algo-
rithms from the 60s, 70s and 80s of the 
last century, waiting for us to be re-dis-
covered and longing to be implemented 
on our powerful processing systems.

Acknowledgements
Thanks to diploma-student Sven Schneider for 

preparation of the images for the Hough-trans-

form for circles, and thanks to my colleague 

Stephan Neser for pointing out the relevance of 

reference [3]. 

References
[1] R. C. Gonzales, R. E. Woods, Digital Image 

Processing, Addison-Wesley, 1993, p. 432–438

[2] W. Burger, M. J. Burge, Digitale Bildverarbei-

tung, Springer, 2005, S.152–167

[3] D. H. Ballard, Generalizing the Hough-trans-

form to detect arbitrary shapes, Pattern Rec-

ognition Vol. 13, No. 2, p 111–122, 1981

 Author
Prof. Dr. Christoph Heckenkamp

Darmstadt University of applied sciences, Optical 
Technology and Machine Vision/Germany
heckenkamp@h-da.de 
www.fbmn.h-da.de 

Fig. 6: Hough-transform for straight lines
a) original image; b) straight lines detected with Hough-transform, applied to boundaries  

B a s i c s

28 Inspect 3/2008 www.inspect-online.com


