
“Real-time“ seems to be a cool term in conversations about machine vision, but raising the

question about the precise meaning may trigger some stimulating discussions. “Real-time

systems” often are simply assumed to be “fast”, whereas some people use the term for

image processing at the frame-rate of a consumer video stream. This article tries to give a

definition of real-time processing within the framework of the inspection of moving ob-

jects in a production line. The main features are the ability of a real-time system to react to

asynchronous sensor signals at any time and to call back within a defined time interval.

Interrupt

Moving parts in a production line will ap-
pear in the field of view of the inspection
system usually not at a constant rate, but
rather at random, asynchronously to any
other process. An image thus has to be
captured on demand within a certain
well defined maximum time interval
whenever an object to be inspected ap-
pears in front of the camera. In order to
meet this requirement, any system suit-
able for this task shall be able to perma-
nently read out a sensor signal (a light-
barrier, e.g.) or to react to an external
signal by starting the image capture and
by triggering other peripheral compo-
nents, if necessary, such as a strobe unit.
The information extracted by the image
processing routine then usually has to be
sent back to the process or will be used

to directly initiate some action down-
stream like a robot, e.g., picking a cer-
tain part. The sensor signal may appear
at any time. Such an asynchronous signal
is usually called an “interrupt request“.
The system used for inspection has to be
able to immediately react to such re-
quests and halt any other process which
might currently run on the system. Since
not a single object must pass the inspec-
tion zone without an image being cap-
tured and processed, the system status
has to be changed from “idle“ to “alert“
within a defined maximum time interval
whenever an object triggers the light
barrier. It is by no means trivial to ask for
this specific requirement.

When an interrupt source in an oper-
ating system has a sufficiently high prior-
ity, the usual process running in the sys-
tem will be interrupted, and the interrupt

service routine will be called as soon as
the request has been acknowledged by
the system. The interrupt service routine
will then take full control of the system.
When this task is finished, the system
status has to be restored, and the usual
routine will resume control. The status of
the process thus has to be stored before
the interrupt service routine takes over.
This is quite similar to a common func-
tion call, but with the notable difference
that a function is called at a precisely de-
fined line of code whereas an interrupt
request will appear at random. During
the interrupt service routine further in-
terrupt requests may appear which may
try to cut in on the current process. It is
immediately clear that interrupt han-
dling is by no means trivial.

An inspection system in machine vi-
sion thus will perform image capture and
image processing within the interrupt
service routine. Looking at the general
structure, these tasks are rather the ex-
ception, the usual process being a more
or less idle cycle. This may seem to be a
quite uncommon view of the problem,
but just lean back and think: the system
usually just waits in a loop for the next
part coming along like an eagle circling
in the air, always carefully looking at the
sensor which will detect an incoming ob-
ject, triggering the interrupt service rou-
tine, which causes the system to swoop

Controllable Time
Image Processing Basics: Real-time

34   Inspect 10/2009 www.inspect-online.com

   B a s i c s

down and catch an image. While being
idle, the system may well perform some
useful tasks such as checking the lighting
system or compensating the noise floor.
But the routine doing the crucial job will
be the interrupt service routine, which
will call back to the process with the re-
sult of the image processing operations.
The system may be busy with image

processing in a situation where a large
number of parts come along with a small
distance between two subsequent ob-
jects, but it may also be idle for several
seconds when a huge gap appears.

The image processing in an inspection
system for a continuous production line
thus works on demand: the event “light
barrier detects a part” triggers the image
capture and the image processing rou-
tine. The event may appear at random, at
any time, asynchronously to any other
process in the system. The system thus
has to be able to detect an interrupt re-
quest and to finish the interrupt service
routine under all possible circumstances
which may occur during the operation of
the system.

Keeping Pace

An interrupt request appears at random:
the program may be working at a line of
code somewhere in a function or at the
beginning of the main procedure. Fur-
thermore, since interrupt sources can
only be scanned with a defined frequency,
there will always remain an uncertainty
about whether the incidence appeared at
the beginning, at the end or sometime in
between the time interval between the
last and the last but one check on the in-
terrupt flag. Managing interrupts is not
trivial. During the interrupt service rou-
tine a further interrupt may be requested
by the light barrier depending on how
the signals at the sensor are evaluated. A
large object travelling through may well

©
 K

im
 D

. F
re

nc
h/

Fo
to

lia
.c

om

Sie wollen Ihr eigenes
GigE Vision™ Device bauen?

Nutzen Sie die GigE FPGA Lösung:
� volle Flexibilität
� professionelle Softwareunterstützung
� unabhängig von fremder Hardware
� leichter Einstieg mit umfangreicher

Dokumentation und zertifiziertem
GigE Vision™ Referenz-Design

Feith Sensor to Image GmbH
Lechtorstr. 20 · D-86956 Schongau · Germany
Tel.: +49 88 61-23 69-0 · Fax: +49 88 61-23 69-69
www.sensor-to-image.de · email@sensor-to-image.de

trigger the interrupt again and again
while blocking the light path. As an alter-
native, the light barrier might be pro-
grammed to trigger an interrupt when
the object leaves the sensor rather than
when it blocks the detector signal. Work-
ing with a system which is able to store
all the interrupts coming in may also be
a useful procedure. Even simple micro-
controllers usually have several inputs to
detect and latch interrupts.

Since an asynchronous hardware-in-
terrupt always can only be detected with
a remaining uncertainty in time, the po-
sition of the parts to be inspected will
vary from image to image. Sensors and
AD-converters also respond with a cer-
tain time lag and may show jitter. Image
capture and usually a strobe-lighting
must be triggered with a defined delay
with regard to the sensor signal in order
to catch the object precisely within the
field of view of the camera. The call-back
to the system also has to work in a well-
defined manner on the time line to allow
handling systems downstream to catch
the proper object. The timeline of the
events in reality thus must be mapped by
the inspection routine in a sufficiently
precise way to allow for tracking of the
objects by all the mechanical and electri-
cal components of the system in pace
with the production cycle. The perfor-
mance of the system according to this re-
quirement is not only determined by the
operating frequency of the processor, but
also by the response times of the other
hardware components.

B a s i c s   

Real-time Processing

A real-time system must be
able to detect an asynchro-
nous interrupt request, to halt
the actual task of the program
and to finish the interrupt
service routine, whatever the
status of the system may be
when the interrupt request
appears. Mapping of the real
timeline, however, is not yet
ensured by these require-
ments. In addition, an upper
limit for the reaction time of
the whole system, including
image capture, image process-
ing and call-back to the pro-
cess, must be accomplished.
The standard configuration
must be re-established after a
certain, well-defined time in-
terval beginning with the event
which triggers the interrupt
request, in our case an object
entering or leaving the light-
barrier. Systems, which work
according to this requirement
such that a maximum reaction
time can be guaranteed under
all possible circumstances in
the process, are called predict-
able or deterministic. This is
quite a tough requirement – it
means that a guaranteed
deadline always, without a sin-
gle exception, will be met.

The reaction time is the
sum of the following time in-
tervals:

The time interval needed ▪
to process and evaluate
the sensor signals to raise
an interrupt request. Time
constants of analog elec-
tronic circuits, gates and
memory access enter into
this time budget.
The time interval needed ▪
by the operating system to
detect an interrupt re-
quest.
The time interval needed ▪
by the operating system to
call the interrupt service
routine. Several operating
systems give higher prior-
ity to other, internal pro-
cesses and ignore external
interrupt requests when
system resources are
scarce.
The time interval needed ▪
to finish the image

processing routine includ-
ing image capture.

The sum of the first three time
intervals usually is called the
interrupt latency. During this
time interval the interrupt is
present in the system, but has
to wait for being acknowl-
edged and serviced. Data
sheets and application notes
usually quote this time inter-
val. Unfortunately, the inter-
rupt latency for a given sys-
tem is not a constant, but is
distributed somehow. There-
fore, you may find so-called
typical data, sometimes the
maximum of the distribution
will be given, and to see the
full distribution, measured
within a defined scenario, will
be a quite rare experience.
Unfortunately, only the full
distribution is a reliable basis
for a decision about whether
the risk related to the appear-
ance of reaction times longer
than the desired time interval
can be taken or not. The forth
component, however, should
not be underemphasized:
proper or sloppy program-
ming of the image processing
routine may have a tremen-
dous influence upon the real-
time performance of your sys-
tem. An image processing
algorithm may need more or
less time to run through de-
pending upon the precise con-
tent of the image. Classifica-
tion, e. g., may branch into
several different loops with
significantly different process-
ing times. Such a behaviour
may be caused by iterations,
recursion or undersampling
with subsequent refinement,
to name only a few possibili-
ties. The performance should
thus be carefully evaluated
for any possible status of the
program whenever the real
time behaviour of the system
might be compromised by the
program module. When pro-
grams become complex to a
degree where systematic test-
ing is no option, real-time per-
formance can no longer be
demonstrated in a strict sense.
Critical items in this context
are recursions, which may oc-

36   Inspect 10/2009 www.inspect-online.com

   B a s i c s

Tel. +49-89-90 60 41

LED- und FL-
Beleuchtungen
für die Bildver-
arbeitung

Mobile
Digital-
Mikroskope

Zoom-
Optiken
und Stereo-
Mikroskope

Software für
Dokumen-
tation und
Vermessung

www.opto-engineering.com

OPTO ENGINEERING
THE TELECENTRIC COMPANY

TELECENTRIC LENSES

Distributed in Germany by

Author22
Prof. Dr. Christoph Heckenkamp
Darmstadt University of applied sciences
Department of Optical Technology and Machine Vision
heckenkamp@h-da.de
www.fbmn.h-da.de

OEM version

Up to 5 MP

NET Software Package

Lockable Connectors

C-/ CS-/ S- Mount

NET Locations:
Germany | USA | Japan

www.net-gmbh.com NEW ELECTRONIC TECHNOLOGY

iCube
 USB2.0 Technology

Visit us at VISION Show booth 4C31

cur when finding the roots of
a system of equations or in in-
terpolation, and the perma-
nent availability of sufficient
memory. Needless to say, a
function from an image
processing library can never
be systematically tested, in a
strict sense, by a user without
access to the source code.

System Failure

A real-time system has to re-
act under any possible exter-
nal conditions within a de-
fined maximum time interval,
calling back with a determin-
istic result. Any reaction after
the deadline will be regarded
as system failure. As a conse-
quence, the highest priority in
the system will usually be
given to the interrupt source,
even higher than all priorities
related to the internal pro-
cesses of the operating sys-
tem itself. Several well-estab-
lished operating systems can
not quote to be real-time sys-
tems according to this crite-
rion, but need further modifi-
cation by real-time exten-
sions. That is a somewhat
risky approach, since an op-
erating system programmer
aiming at office applications
will probably not keep in
mind the requirements of an
extension which dares to
tinker with his precious pri-
orities. But never mind, there
are derivatives based on com-
mon operation systems which
have been developed pre-
cisely for real-time applica-
tions and are reported to
work well. Peripheral compo-
nents, however, may also
compromise the real-time
performance of a system. A
classical strobe lamp, e.g.,
will fire at a rate basically de-
termined by the time constant
of the discharge capacitor.
The real-time performance of
the operating system may be

first-rate in this scenario, but
triggering the next strobe too
early (because the next part
already appears in the field of
view) and without the capaci-
tor fully charged, will usually
not yield an acceptable im-
age. In general, real-time per-
formance is accomplished by
systems which can capture an
image on demand whenever
an external signal triggers
the process, react within a
well-defined time interval by
finishing the image process-
ing routine, and call back
to the process such that a
deadline for the action to be
taken can be guaranteed un-
der any possible circum-
stances. Rather than through-
put, availability of the pro-
cesses and deterministic be-
haviour are the crucial issues
in real-time applications. The
acceptable maximum reac-
tion time needed to keep pace
with the production process,
however, depends upon the
requirements of the specific
application. Since frame rates
of 100 per second and trans-
port velocities of 10 m/s are
at the upper end of the re-
quirement range for machine
vision, reaction time intervals
in the order of milliseconds
usually will be sufficient to
provide real-time perfor-
mance, as long as parts come
along one by one and with a
specified minimum distance
to each other. Real-time re-
quirements for signal process-
ing in airbags or ABS-brakes
and in a lot of industrial con-
trol applications are much
more demanding with reac-
tion times in the microsecond
range. With regard to real-
time performance, image
processing for inspection of
moving parts in production
lines can well be mastered
with current technologies and
will remain a safe field for a
lot of years to come.

B a s i c s   

