

Optische Qualitätsprüfung von Solarzellen und Solarzellen-Modulen

Dipl.-Ing. Erich Butzer

VITRONIC Dr.-Ing. Stein
Bildverarbeitungssysteme GmbH

Agenda

- Wer ist VITRONIC GmbH
- Ziele und Herausforderungen der Optischen Qualitätsprüfung von Solarzellen und -Modulen
- Vorstellung der Produktreihe
- Kundennutzen

VITRONIC GmbH

Dr.-Ing. Norbert SteinGeschäftsführender Gesellschafter

Mitarbeiter: über 300 Mitarbeiter (Stand 2007)

Eigenkapital: € 20 Mio.

Umsatz 2007: € 35 Mio., Firmengruppe VITRONIC

Standorte: VITRONIC ist auf vier Kontinenten vertreten

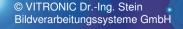
- Wiesbaden, Hauptsitz, Produktion
- Louisville, USA
- Mitcham, Australien
- Nottingham, Großbritannien
- Shanghai, China
- Lyon, Frankreich

Optische Qualitätsprüfung von Solarzellen und -modulen

Ziel

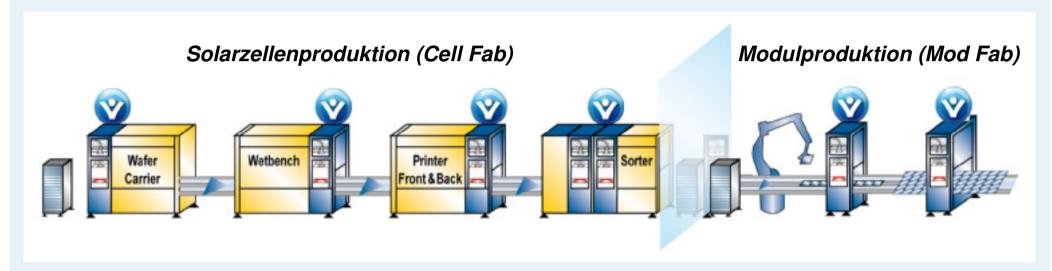
- Qualitativ hochwertige Solarzellen und –module
- Eindeutige Qualitäts-Klassifizierung
- Bruch und NIO-Teile vor der Weiterverarbeitung ausschleusen (Recycling)

Herausforderung


- Sehr unterschiedliche Anforderungen
- Erkennen feinster
 Strukturen und Defekte
- Schwierige Kontrastieraufgaben
- Einfache Integration in unterschiedliche Anlagen
- Einfache Handhabung

Vitronic Lösung

Standardisiertes
 Sensorik- u. System konzept für alle Wafer-,
 Zell- und Modulprüfungen
 entlang der Wert schöpfungskette



- Robuste Hard- und Software, "State of the art"
- Anbindung an MES, Rückverfolgbarkeit
- Praktisch kein Schlupf, sehr geringer
 Pseudofehleranteil

Produktreihe VINSPEC solar für die Optische Qualitätsprüfung

wafer microcrack	color	front/rear	classifier	cell	string	module
Eingangs- prüfung	Farb- prüfung	Druck- prüfung	Zelltester, Klassifizierer	Eingangs- prüfung	Löt- u. Positions- prüfung	Maß-, Positions- u. EL-Prüfung

Waferprüfung

Anwendung

- Zur Eingangsprüfung in der Solarzellenproduktion
- Zur Ausgangsprüfung in der Waferproduktion

Waferprüfung

Anwendung

- Zur Eingangsprüfung in der Solarzellenproduktion
- Zur Ausgangsprüfung in der Waferproduktion

Prüft inline Wafer auf:

- Geometrie / Symmetrie
- Ecken- und Kantenausbrüche
- Chipping
- Sägerillen, topologische Fehler
- Oberflächenfehler (Flecken)
- Einschlüsse
- Schmutz, Flecken
- Löcher

Waferprüfung

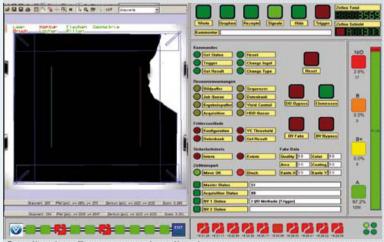
Anwendung

- Zur Eingangsprüfung in der Solarzellenproduktion
- Zur Ausgangsprüfung in der Waferproduktion

Prüft inline Wafer auf:

- Geometrie / Symmetrie
- Ecken- und Kantenausbrüche
- Chipping
- Sägerillen, topologische Fehler
- Oberflächenfehler (Flecken)
- Einschlüsse
- Schmutz, Flecken
- Löcher

Technische Details


Kameras: 4 MPixel CMOS-Flächenkamera

Beleuchtung: Streiflicht und diffuses Auflicht

für 2D- und 3D-Oberflächenfehler, zusätzliche LED Hinterleuchtung

Software: leistungsstarke Erkennung

mit 5 Bildaufnahmen

Grafische Benutzeroberfläche

Mikrorissprüfung

Anwendung

- Zur Eingangsprüfung in der Solarzellenproduktion
- Zur Ausgangsprüfung in der Waferproduktion

Mikrorissprüfung

Anwendung

- Zur Eingangsprüfung in der Solarzellenproduktion
- Zur Ausgangsprüfung in der Waferproduktion

Prüft inline Wafer auf:

- Mikrorisse
- Flecken
- Sägerillen
- Dekorierte Korngrenzen
- Einschlüsse
- Löcher
- Bruch

Mikrorissprüfung

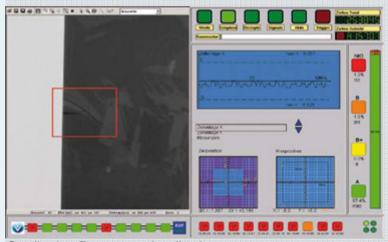
Anwendung

- Zur Eingangsprüfung in der Solarzellenproduktion
- Zur Ausgangsprüfung in der Waferproduktion

Prüft inline Wafer auf:

- Mikrorisse
- Flecken
- Sägerillen
- Dekorierte Korngrenzen
- Einschlüsse
- Löcher
- Bruch

Technische Details


Kameras: Vier Spezial-Matrixkameras

mit je 4 MPixel (2k x 2k)

Beleuchtung: IR-LED Flächenlichtquelle

Software: praktisch kein Schlupf,

sehr geringe Pseudofehlerrate

Grafische Benutzeroberfläche

Farbprüfung

Anwendung

Prüfung nach der Nassbank

Farbprüfung

Anwendung

Prüfung nach der Nassbank

Prüft inline auf:

- Schichtdicke
- Farbklasse
- Schichtdicken-, Farbinhomogenität
- Farbkontraste
- Mitten- und Randbereich
- Oberflächenfehler

Farbprüfung

Anwendung

Prüfung nach der Nassbank

Prüft inline auf:

- Schichtdicke
- Farbklasse
- Schichtdicken-, Farbinhomogenität
- Farbkontraste
- Mitten- und Randbereich
- Oberflächenfehler

Technische Details

Kameras: Farbkamera mit 1,4 bzw. 4 MPixel

Beleuchtung: LED-Beleuchtungsmodul mit Diffus-

und Streiflicht

Software: anpassbare Kachelauswertung

in H, S, I

Grafische Benutzeroberfläche

Druckprüfung Vorderseite

Anwendung

• Prüfung nach dem Vorderseitensiebdruck

Druckprüfung Vorderseite

Anwendung

• Prüfung nach dem Vorderseitensiebdruck

Prüft inline auf:

- Ecken- und Kantenausbrüche
- Druckposition auf Verdrehung des Druckes
- Fingerunterbrechungen
- Fingerbreite
- Fingerknoten
- Pastenflecken
- Verschmutzung, sonstige Flecken
- Fehlender Frontdruck

Druckprüfung Vorderseite

Anwendung

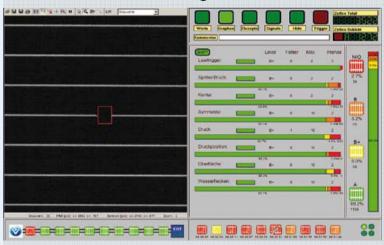
Prüfung nach dem Vorderseitensiebdruck

Prüft inline auf:

- Ecken- und Kantenausbrüche
- Druckposition auf Verdrehung des Druckes
- Fingerunterbrechungen
- Fingerbreite
- Fingerknoten
- Pastenflecken
- Verschmutzung, sonstige Flecken
- Fehlender Frontdruck

Technische Details

Kameras: Speziell angepasste Zeilenkamera mit 4


optional bis zu 8 KPixel

Beleuchtung: Extrem diffuses Auflicht und Hinter-

leuchtung

Software: stabile und leistungsstarke

Auswertung durch sehr gute Unterdrückung der Kristallstruktur bei Multis

Grafische Benutzeroberfläche

Druckprüfung Rückseite

Anwendung

 Prüfung nach der Bedruckung der Solarzellen-Rückseite

Druckprüfung Rückseite

Anwendung

 Prüfung nach der Bedruckung der Solarzellen-Rückseite

Prüft inline auf:

- Ecken- und Kantenausbrüche
- Druckposition und Verdrehung des Druckes
- Fehlende Paste
- Busbarverengung
- Pastenflecken und sonstige Flecken
- Unebenheiten (Wafersplitter, Rakelabdrücke, Blasen)

Druckprüfung Rückseite

Anwendung

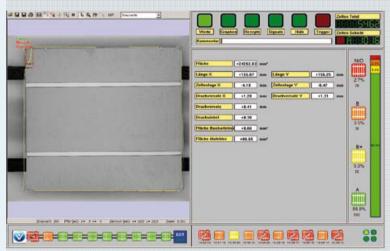
 Prüfung nach der Bedruckung der Solarzellen-Rückseite

Prüft inline auf:

- Ecken- und Kantenausbrüche
- Druckposition und Verdrehung des Druckes
- Fehlende Paste
- Busbarverengung
- Pastenflecken und sonstige Flecken
- Unebenheiten (Wafersplitter, Rakelabdrücke, Blasen)

Technische Details

Kameras: 4 MPixel CMOS-Flächenkamera


(2k x 2k)

Beleuchtung: LED-Auflicht, Hinterleuchtung und

Streiflicht

Software: leistungsstarke Erkennung

mit 5 Bildaufnahmen

Grafische Benutzeroberfläche

Zelltester, Klassifizierung

Anwendung

- Prüfung Solarzellen im Zelltester
- Besteht aus den Systemen für Druckprüfung Vorder- und Rückseite sowie Farbprüfung

Zelltester, Klassifizierung

Anwendung

- Prüfung Solarzellen im Zelltester
- Besteht aus den Systemen für Druckprüfung Vorder- und Rückseite sowie Farbprüfung

Prüft inline auf:

- Farbkontrast und Farbinhomogenitäten
- Schichtdicke
- Ecken- und Kantenausbrüche
- Druckposition
- Verdrehung des Drucks
- Fingerunterbrechungen
- Fingerbreite
- Pastenflecke
- Fehlender Frontdruck
- Fingerabdrücke, Schmutz, Blistering, Flecken, Löcher, Risse
- Fehlende Paste auf der Rückseite
- Unebenheiten (Pickel, Blasen)

Zelltester, Klassifizierung

Anwendung

- Prüfung Solarzellen im Zelltester
- Besteht aus den Systemen für Druckprüfung Vorder- und Rückseite sowie Farbprüfung

Prüft inline auf:

- Farbkontrast und Farbinhomogenitäten
- Schichtdicke
- Ecken- und Kantenausbrüche
- Druckposition
- Verdrehung des Drucks
- Fingerunterbrechungen
- Fingerbreite
- Pastenflecke
- Fehlender Frontdruck
- Fingerabdrücke, Schmutz, Blistering, Flecken, Löcher, Risse
- Fehlende Paste auf der Rückseite
- Unebenheiten (Pickel, Blasen)

Technische Details

Kameras: Hochauflösende Zeilenkamera mit

4.096, optional 8.192 Pixeln, Farbkamera

mit 1.400 x 1.000 Pixel

Flächenkamera mit 2.048 x 2.048 Pixel

Beleuchtung: LED und LL-Auflicht, Hinterleuchtung

Software: gemeinsamer Rezept-Zugriff

MES-Anbindung

Grafische Benutzeroberfläche

Zellprüfung

Anwendung

 Eingangsprüfung für die Modulproduktion und automatische Positionierung in der Weiterverarbeitung (Stringer)

Zellprüfung

Anwendung

 Eingangsprüfung für die Modulproduktion und automatische Positionierung in der Weiterverarbeitung (Stringer)

Prüft inline auf:

- Lagermittlung der Solarzellen im Greifer
- Übergabe von Offset-Werten an Handlingsteuerung
- Symmetrie (Kantenlänge, Diagonale, Fläche, etc.)
- Ecken- und Kantenausbrüche
- Druckposition
- Fingerunterbrechungen, Fingerverdickungen
- Fehlender Frontruck
- Oberflächenfehler (Pastenflecken, usw.)

Zellprüfung

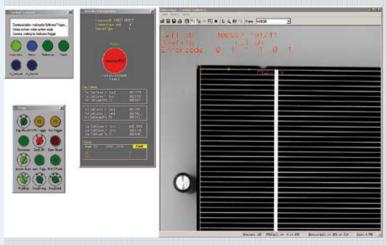
Anwendung

 Eingangsprüfung für die Modulproduktion und automatische Positionierung in der Weiterverarbeitung (Stringer)

Prüft inline auf:

- Lagermittlung der Solarzellen im Greifer
- Übergabe von Offset-Werten an Handlingsteuerung
- Symmetrie (Kantenlänge, Diagonale, Fläche, etc.)
- Ecken- und Kantenausbrüche
- Druckposition
- Fingerunterbrechungen, Fingerverdickungen
- Fehlender Frontruck
- Oberflächenfehler (Pastenflecken, usw.)

Technische Details


Kameras: Hochauflösende Flächenkamera

mit 2.024 x 2.024 Pixel

Beleuchtung: Auflichtbeleuchtung mit Hochleistungs-LED

Software: schnelle Lageermittlung nach Bilderstellung

in der Bewegung der Solarzelle, zusätzliche Qualitätsprüfung

Grafische Benutzeroberfläche

Stringprüfung

Anwendung

Qualitätsprüfung im String

Stringprüfung

Anwendung

Qualitätsprüfung im String

Lageermittlung:

- Position der Solarzellen im String
- Ermittlung der Gesamtstringposition
- Übergabe von Offsetwerten an Handlingsystem zur optimalen Ablage des Strings in der Matrix
- Prüfung, ob Zellen innerhalb der Lagetoleranz
- Ermittlung der Gesamtstringlänge

Qualitätsmerkmale

- Ausbruch an der Außenkontur
- Symmetrie und Unterbrechung des Siebdrucks
- Fehlende Bändchen zwischen den Solarzellen
- Verdrehung der Bändchen

Stringprüfung

Anwendung

Qualitätsprüfung im String

Lageermittlung:

- Position der Solarzellen im String
- Ermittlung der Gesamtstringposition
- Übergabe von Offsetwerten an Handlingsystem zur optimalen Ablage des Strings in der Matrix
- Prüfung, ob Zellen innerhalb der Lagetoleranz
- Ermittlung der Gesamtstringlänge

Qualitätsmerkmale

- Ausbruch an der Außenkontur
- Symmetrie und Unterbrechung des Siebdrucks
- Fehlende Bändchen zwischen den Solarzellen

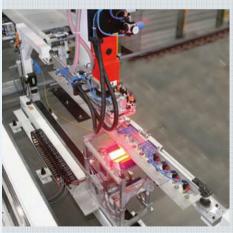
INDUSTRIE

Verdrehung der Bändchen

Technische Details

Kameras: Hochauflösende Zeilenkamera mit 4

optional mit 8 KPixel


Beleuchtung: Hinterleuchtungseinheit und spezielles Auflicht

(High-Power-LEDs)

Software: stabile und leistungsstarke Auswertung ohne

Ablegen des Gesamtstrings

Schnittstelle: elektrische Schnittstelle zum Anlagensystem

String-Inspektion

Anwendung

Bildverarbeitungssysteme pr

üfen vor der Fertigstellung der Module auf unterschiedliche Merkmale

Anwendung

Prüft inline

- Anordnung, Abstände der einzelnen Solarzellen sowie der Querverbinder zu Solarzellen- und Glasrand
- Spaltbreite an Modulrahmenecken
- Mikrorisse und nicht aktive Bereiche mittels Elektrolumineszenz
- Lageermittlung der Anschlussbox zum Verlöten

Anwendung

Bildverarbeitungssysteme prüfen vor der Fertigstellung der Module auf unterschiedliche Merkmale

Prüft inline

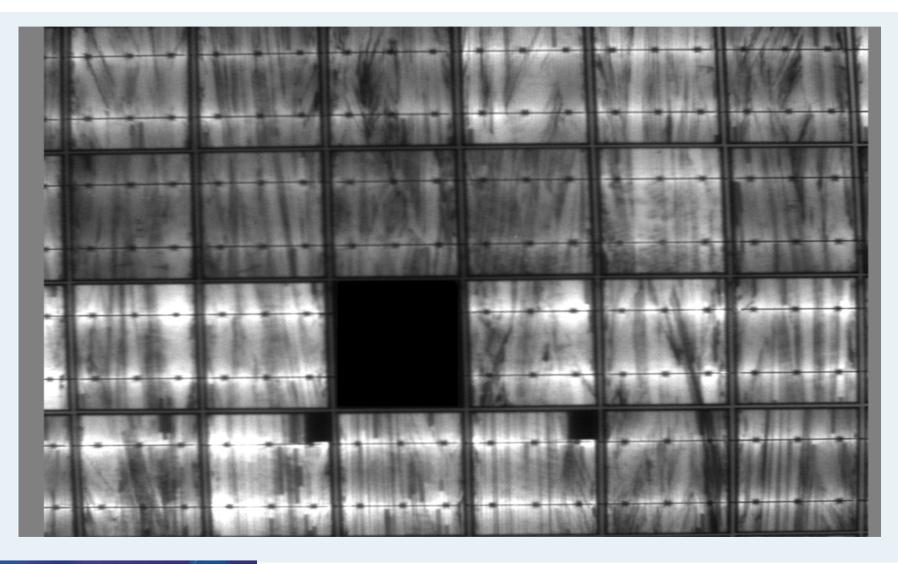
- Anordnung, Abstände der einzelnen Solarzellen sowie der Querverbinder zu Solarzellen- und Glasrand
- Spaltbreite an Modulrahmenecken
- Mikrorisse und nicht aktive Bereiche mittels Elektrolumineszenz
- Lageermittlung der Anschlussbox zum Verlöten

Technische Details

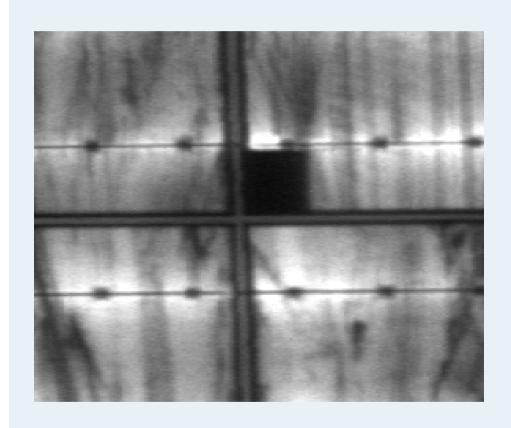
Kameras: Hochempfindliche 3 MPixel-Flächenkamera

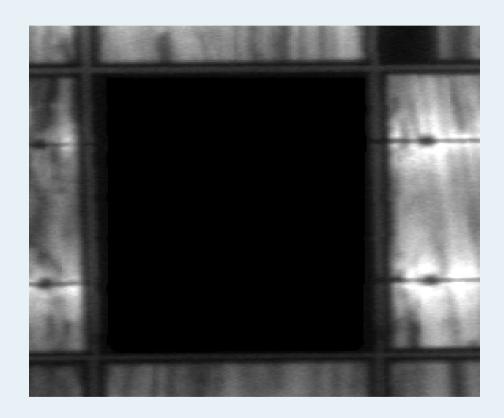
für Elektrolumineszenzprüfung 1,3 MPixel Flächenkamera für Abstandsprüfung Standard-Flächenkamera für Rahmen- bzw.

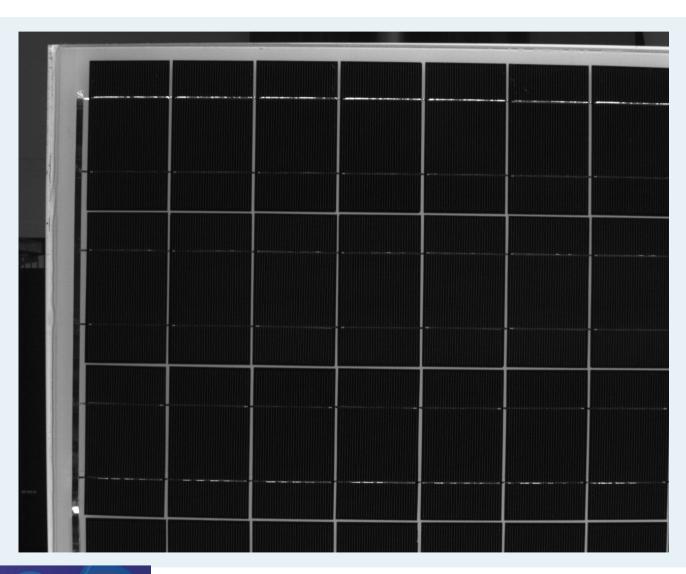
Eckenprüfung

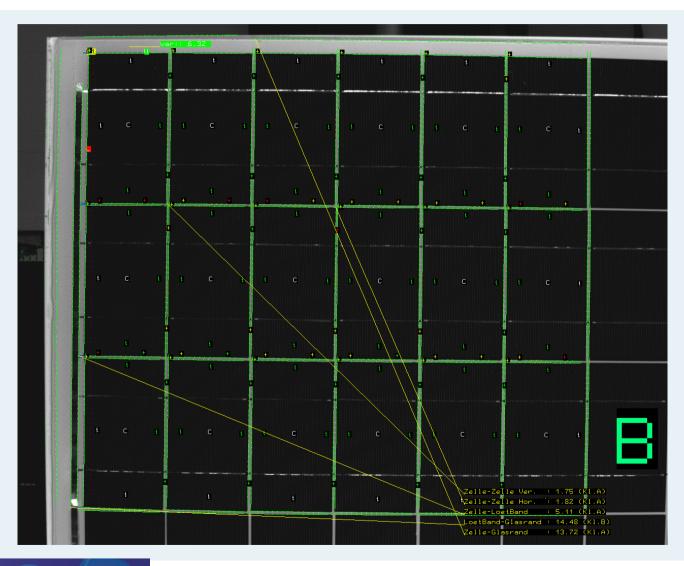

Software: Spezielle Auswertung für jedes Prüfsystem

Schnittstelle: je nach Anlagensystem


Modul-Inspektion







Kundennutzen

- Objektive automatisierte Qualitätskontrolle
- Kosteneinsparungen
- Ermöglicht Rückverfolgung der Solarzellenproduktion
- Erkennt und klassifiziert Fehlermerkmale praktisch ohne Pseudofehler zu generieren
- MES integrationsfähig
- Klassifizierung der Zellen
- ermöglicht automatisiertes Handling
- Qualitätssteigerung der Endprodukte durch schnellere und bessere Prozesskontrolle

Besuchen Sie unseren Stand Nr. 303 in der Halle B2.